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ATTACHMENT 1: Glossary

Beta Distribution is a flexible, bounded PDF described by two shape parameters.  It is commonly used
when a range of the random variable is known. (p. A3-14)

Boxplot is a graphical representation showing the center and spread of a distribution, along with a display
of outliers. (p. A3-10)

Central Limit Theorem says that for a relatively large sample size, the random variable x (the mean of the
samples) is normally distributed, regardless of the population’s distribution.  (p. A3-14)

Coefficient of Variation (also Coefficient of Variance or Coefficient of Variability)* is an estimate of
relative standard deviation.  Equals the standard deviation divided by the mean.  Results can be represented
in percentages for comparison purposes.  (p. A3-7)

Confidence Interval is the range within which one has a given level of confidence that the range includes
the true value of the unknown parameter (e.g. a 95% confidence interval for a parameter means that 95%
of the time the true value of that parameter will be within the interval).

Continuous Probability Distribution* is a probability distribution that describes a set of uninterrupted
values over a range.  In contrast to the Discrete distribution, the Continuous distribution assumes there are
an infinite number of possible values.

Correlation, Correlation Analysis is an investigation of the measure of statistical association among
random variables based on samples.  Widely used measures include the linear correlation coefficient (also
called the product-moment correlation coefficient or Pearson correlation coefficient), and such non-
parametric measures as Spearman rank-order correlation coefficient, and Kendall's tau.  When the data are
nonlinear, non-parametric correlation is generally considered to be more robust than linear correlation.

Correlation Coefficient* is a number between -1 and 1 that specifies mathematically the degree of positive
or negative correlation between assumption cells.  A correlation of 1 indicates a perfect positive correlation,
minus 1 indicates a perfect negative correlation, and 0 indicates there is no correlation.

Cumulative Distribution Function (CDF) is alternatively referred to in the literature as the distribution
function, cumulative frequency function, or the cumulative probability function.  The cumulative
distribution function, F(x), expresses the probability the random variable X assumes a value less than or
equal to some value x, F(x)=Prob(X # x).  For continuous random variables, the cumulative distribution
function is obtained from the probability density function by integration.  In the case of discrete random
variables, it is obtained by summation.

Cumulative Frequency Distribution is a chart that shows the number or proportion (or percentage) of
values less than or equal to a given amount.
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Deterministic Model, as opposed to a stochastic model, is one which contains no random elements.

Discrete Probability Distribution* is a probability distribution that describes distinct values, usually
integers, with no intermediate values.  In contrast, the continuous distribution assumes there are an infinite
number of possible values.

Distribution is the pattern of variation of a random variable.

Frequency (also Frequency Count)* is the number of times a value recurs in a group interval.

Frequency Distribution* is a chart that graphically summarizes a list of values by subdividing them into
groups and displaying their frequency counts.

Goodness-of-Fit is a set of mathematical tests performed to find the best fit between a standard probability
distribution and a data set.

Goodness-of-Fit Test is a formal way to verify that the chosen distribution is consistent with the sample
data.

Group Interval is a subrange of a distribution that allows similar values to be grouped together and given
a frequency count.

Histogram is a plot of the range of values of a variable into intervals and displays only the count of the
observations that fall into each interval.  (p. A3-9)

Interquartile Range is the difference between the third quartile (75th percentile) and the first quartile (25th
percentile).  (p. A3-10)

Kurtosis* is the measure of the degree of peakedness and flatness of a curve.  The higher the kurtosis, the
closer the points of the curve lie to the mode of the curve.  A normal distribution curve has a kurtosis of 3.
(p. A3-7)

Lognormal Distribution is the distribution of a variable whose logarithm is normally distributed.  (p. A3-
15)

Mean is the arithmetic average of a set of numerical observations: the sum of the observations divided by
the number of observations  (p. A3-7).

Measurement Error is error introduced through imperfections in measurement techniques or equipment.

Median is the value midway (in terms of order) between the smallest possible value and the largest possible
value.  It is that value above which and below which half the population lies (p. A3-7).

Mode* is that value which, if it exists, occurs most often in a data set. (p. A3-7)
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Monte Carlo Analysis (Monte Carlo Simulation) is a computer-based method of analysis developed in
the 1940's that uses statistical sampling techniques in obtaining a probabilistic approximation to the
solution of a mathematical equation or model.  It is a method of calculating the probability of an event
using values, randomly selected from sets of data repeating the process many times, and deriving the
probability from the distributions of the aggregated data.

Non-parametric Approach is one that does not depend for its validity upon the data being drawn from a
specific distribution, such as the normal or lognormal.  A distribution-free technique.

Normal Distribution  is a probability distribution for a set of variable data represented by a bell shaped
curve symmetrical about the mean.  (p. A3-14)

Parameter.  Two distinct, but often confusing, definitions for parameter are used.  In the first usage
(preferred), parameters refers to the constants characterizing the probability density function or cumulative
distribution function of a random variable.  For example, if the random variable W is known to be normally
distributed with mean µ and standard deviation ó, the characterizing constants µ and ó are called
parameters.  In the second usage, parameters are defined as the constants and independent variables which
define a mathematical equation or model.  For example, in the equation Z=áX+âY, the independent
variables (X,Y) and the constants (á,â) are all parameters.

Parametric Approach is a method of probabilistic analysis in which defined analytic probability
distributions are used to represent the random variables, and mathematical techniques (e.g., calculus) are
used to get the resultant distribution for a function of these random variables.

Percentile is the value that exceeds X percent of the observations.

Population is the total collection of observations that is of interest.

Probability (Classical Theory) is the likelihood of an event.

Probabilistic Approach is an approach which uses a group of possible values for each variable to estimate
risk.

Probabilistic Density Function (PDF)

Probabilistic Model is a system whose output is a distribution of possible values.  

Probability Density Function (PDF) is a distribution of values for a random variable, each value having a
specific probability of occurrence.  It is alternatively referred to in the literature as the probability function
or the frequency function.  For continuous random variables, that is, the random variables which can
assume any value within some defined range (either finite or infinite), the probability density function
expresses the probability that the random variable falls within some very small interval.  For discrete
random variables, that is, random variables which can only assume certain isolated or fixed values, the
term probability mass function (PMF) is preferred over the term probability density function.  PMF



DRAFT 2-6-98
DO NOT CITE OR QUOTE

A1-5

expresses the probability that the random variable takes on a specific value.

Quantile-Quantile (Q-Q) Plot  portrays the quantiles (percentiles divided by 100) of the sample data
against the quantiles of another data set or theoretical distribution (e.g., normal distribution).  By
comparing the data to a theoretical distribution with a straight line, departures from the distribution are
more easily perceived.  (p. A3-24)

Random Error is error caused by making inferences from a limited database.

Random Number Generator* is a method implemented in a computer program that is capable of
producing a series of independent, random numbers.

Random Variable is a quantity which can take on any number of values but whose exact value cannot be
known before a direct observation is made.  For example, the outcome of the toss of a pair of dice is a
random variable, as is the height or weight of a person selected at random from the New York City phone
book.

Range* is the difference between the largest and smallest values in a data set.

Regression Analysis (Simple) is the derivation of an equation which can be used to estimate the unknown
value of one variable on the basis of the known value of the other variable.

Sampling.  One of two sampling schemes are generally employed: simple random sampling or Latin
Hypercube sampling.  Latin hypercube sampling may be viewed as a stratified sampling scheme designed
to ensure that the upper or lower ends of the distributions used in the analysis are well represented.  Latin
hypercube sampling is considered to be more efficient than simple random sampling, that is, it requires
fewer simulations to produce the same level of precision.  Latin hypercube sampling is generally
recommended over simple random sampling when the model is complex or when time and resource
constraints are an issue.

Sensitivity Analysis is an analysis that attempts to provide a ranking of the model's input parameters with
respect to their contribution to model output variability or uncertainty.  In broader sense, sensitivity can
refer to how conclusions may change if models, data, or assessment assumptions are changed.

The difficulty of a sensitivity analysis increases when the underlying model is nonlinear, nonmonotonic or
when the input parameters range over several orders of magnitude.  

Simple Random Sampling (SRS) is a sampling procedure by which each possible member of the
population is equally likely to be the one selected.

Simulation, in the context of Monte Carlo analysis, is the process of approximating the output of a model
through repetitive random application of a model.
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Skewness is the measure of the degree of deviation of a curve from the norm of a symmetric distribution. 
The greater the degree of skewness, the more points of a curve lie to one side of the peak of the curve.  a
normal distribution curve having no skewness is symmetrical, that is to say that there exists a central value
a such that f(x-a)=f(a-x), f(x) being the frequency function.  (p. A3-7)

Standard Deviation is a measure of dispersion which is expressed in the same units as the measurements. 
It is a measurement of the variability of a distribution, i.e., the dispersion of values around the mean. 
Standard deviation is the square root of the variance for a distribution (p. A3-7). 

Standard Error of the Mean is the standard deviation of the distribution of possible sample means.  This
statistic gives one indication of how precise the simulation is.

Stochastic is a term referring to a process involving a random variable.

Triangular Distribution  is a distribution with a triangular shape.  It is characterized by its minimum,
maximum and mode (most likely) values.  It is often used to represent a truncated log-normal or normal
distribution if there is little information available on the parameter being modeled.  (p. A3-14)

Variability refers to observed differences attributable to true heterogeneity or diversity in a population or
exposure parameter which cannot be reduced by additional data collection.

Sources of variability are the result of natural random processes and stem from environmental, lifestyle ,
and genetic differences among humans.  Examples include human physiological variation (e.g., natural
variation in bodyweight, height, breathing rates, drinking water intake rates), weather variability, variation
in soil types and differences in contaminant concentrations in the environment.  Variability is usually not
reducible by further measurement or study (but can be better characterized).

Variance is a measure of the dispersion, or spread, of a set of values about a mean.  Variance is the square
of the standard deviation, i.e., the average of the squares of the deviations of a number of observations from
their mean value.  When values are close to the mean, the variance is small.  When values are widely
scattered about the mean, the variance is larger.
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ATTACHMENT 2:  Probabilistic Risk Assessments and Monte-
Carlo Methods: A Brief Introduction

Risk assessments are a crucial part of EPA’s pesticide regulatory  program and have been for over 25
years.  These assessments are used to estimate impacts on human health and the environment from the use
of a given pesticide. Agency policy is that risk assessment should be conducted in a tiered approach,
proceeding from simple to more complex analyses as the risk management situation requires.  The Agency
has traditionally used “deterministic” assessments involving point estimates of specific parameters to
generate a single estimate of exposure and risk based on various assumptions about the concentration of
pesticide in any given medium (e.g., food, water, air etc)  and the amount of that medium  consumed, 
breathed, or otherwise contacted.  Deterministic assessments can begin with worst-case assumptions (for
example, residues on foods at tolerance levels), then can be refined by more realistic values that remain
point estimates (for example, average residues from field trials).  Even with a tiered approach, each
deterministic assessment provides single values for estimates of exposure from a given pathway. Such
single-value risk estimates do not provide information on the variability and uncertainty that may be
associated with an estimate.  

Current Agency Policy (5/15/97) is that probabilistic analysis techniques (of which Monte-Carlo is one
example) can be viable statistical tools for analyzing variability and uncertainty in risk assessments,
provided they are supported by adequate data and credible assumptions. Probabilistic techniques can
enhance risk estimates by more fully incorporating available information concerning the range of possible
values that an input variable could take, and weight these values by their probability of occurrence. As an
example, a particular food commodity (e.g., tomatoes) might contain a range of pesticide residues for any
given pesticide, with a large percentage of tomatoes consumed actually containing no residues at all (since
not all tomatoes are treated).  In addition, individuals may or may not consume tomatoes on any given day
and, over time, are expected to consume varying amounts of this food item due to varying daily
consumption patterns.  Probabilistic risk analysis permits OPP to assess the range of exposures (and their
associated probabilities) which result from combinations of the various residue levels and consumption
patterns.   The resulting output of a probabilistic determination is a distribution of risk values with 
probability assigned to each estimated risk.  Some of the major differences between deterministic and
probabilistic estimates are summarized in the table below:
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Deterministic Risk Assessment Probabilistic Risk Assessment

C Pesticide concentrations and  potential
exposure factors are expressed as point
estimates.  

C The risk estimate is also expressed as
point value.  The variability and
uncertainty of this value are not reflected.  

C Takes into account all available
information and considers the probability
of an occurrence.

C The risk estimate is expressed as a
distribution of values, with a probability
assigned to each value. 

C The distribution reflects variability and
uncertainty.

 

Tiered Approach to Risk Assessment 

As risk assessments are refined, assumptions can proceed from more conservative (more health protective)
to more realistic reflections of exposure.  As noted above with the example of residues on food, such
refinements can be applied to deterministic assessments.  Probabilistic analyses, including Monte Carlo,
represent numerical techniques to reflect more realistic assumptions.  For example, Tier I of acute dietary
assessments as conducted by OPP includes conservative assumptions such as: all foods consumed by an
individual in any given day were treated with the pesticide in question (if registered for use on that food)
and that residues are present in those consumed foods at the maximum legal limit.  Monte-Carlo techniques
fully applied to this situation would allow  incorporation of information concerning the percent of the crop
which is treated, the amount of pesticide applied and timing of its application, and the range and
distribution of residue values expected to be found.  This information is useful because a particular food
(e.g., tomatoes) might contain a range of pesticide residues for any given pesticide, with a large percentage
of tomatoes consumed actually containing no residues at all (since not all tomatoes are treated).  In
addition, individuals may or may not consume tomatoes on any given day and, over time, are expected to
consume varying amounts of this food item due to varying daily consumption patterns.  Any variability and
uncertainty is explicitly included in the analysis and is fully disclosed. 

The Origin of Monte-Carlo Techniques

Monte-Carlo techniques have been used since the 1940's when they were first developed by physicists
working on the Manhattan project.  Only recently, however, have personal computers become sufficiently
powerful and widespread for Monte-Carlo techniques to be widely applied for health risk assessments. 
Modern spreadsheet programs now provide a range of critical facilities to help to illustrate and order a
model including advanced statistical functions, charting, etc.  And the simplicity and capabilities  of
recently introduced commercial Monte-Carlo software allows these techniques to become virtually all but
routine.  
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The origin of the name “Monte-Carlo” relates to the famous gambling city in Monaco, but the relation to
gambling applies only to the probability of a given event occurring over the long term.   Although one
cannot know precisely which number will appear on the next roll of a craps die or the spin of a  roulette
wheel, one can predict over the long term (and as precisely as desired) the frequencies associated with each
outcome.  Monte-Carlo numerical techniques similarly cannot predict exactly which exposures will occur
on any given day to any specific individual, but can predict the range of potential exposures in a large
population and each exposure’s associated probability.     

What is Monte-Carlo Analysis?

Monte-Carlo analysis is simply one of several mathematical techniques for performing probabilistic risk
assessments. The Monte Carlo technique, as applied to exposure assessment, involves combining the
results of hundreds or thousands of  random samplings of values from input probability distributions in
such a manner as  to produce an output distribution which reflects the expected range and frequency of
exposures. Although computationally-intensive, Monte-Carlo techniques themselves are not complicated. 
Assessing a Monte-Carlo analysis requires examining the appropriateness of assumptions, judgements,  and
data sets which are key inputs to the mathematical procedures.  

The first step in a Monte-Carlo simulation is the construction of a  model that accurately represents the
problem at hand.  The makeup of the model usually entails a mathematical combination (addition,
multiplication, logarithms, etc.) of the model input variables which can be expressed as probability
distributions. If, for example, one desires to simulate the daily dietary pesticide exposure to individuals
from a particular pesticide in tomatoes, this can be  simulated by repeatedly drawing random values from
two separate distributions: one distribution  represents tomato consumption by individuals while the other
represents  pesticide levels in tomatoes. Here, the output variable (daily pesticide exposure)  is defined as
the product of the two input variables (tomato consumption in grams/day and pesticide residue
concentrations in ug/g).  Each random pair of input variables obtained from repeated independent
samplings of the input distribution are multiplied together and the product used as one point in the
distribution for the output variable.   In general, this process is repeated thousands of times and the
thousands of output products generated, taken together, form a distribution of frequencies. This technique
is more fully illustrated in the box on the following page:   
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Suppose that our two input variables are defined as a and B where a = {2 , 4, 6, 8, 10},  B = {10,
20, 30, 40, 50}, and our output variable C  is defined as the product of a and B (i.e., C = a x B). 
Set a might represent the concentration of a pesticide in tomatoes (in ug/g) and Set B might
represent the daily consumption of tomatoes (in g/day). We wish to determine the range and
frequency of potential values of C (which in this case would represent daily exposure to the
pesticide in ug/day) . Inspection of the input data immediately reveals that the value for C (daily
exposure)  can range
from a low of 20
ug/day (i.e., 2 x 10) to
a high of 500 ug/day
(i.e., 10 x 50) and that
each of these two
extreme values should
occur approximately
4% of the time (i.e.,
1/5 x 1/5 = 1/25 =
4%),  Monte-Carlo
methods permit us to
evaluate all values that
can be generated for
the value C along with
each of  their associated probabilities.  The Monte-Carlo method randomly chooses a single
pesticide concentration value from Set a and a single tomato consumption value from Set B.  These
two values are multiplied together (to give daily pesticide exposure, C)  and this resultant  value
stored.  This process is repeated thousands of times with all values of C eventually  plotted as a
frequency histogram as shown above. Note that the lowest value is 20 ug/day and the highest value
is 500 ug/day, just as originally predicted.  Note also that these two values each occur
approximately 4% of the time, just as (again) predicted from our original inspection.  Although
this example uses discrete values for sets a and B, Monte-Carlo modeling can also be performed
when the input variable are described as continuous variables.   

   

Regardless of  how accurately the fitted distribution conforms to the data, or what method of sampling is
used, the analyst has to set up a model that reflects the situation being assessed.   According to Vose’s
Quantitative Risk Analysis: A Guide to Monte Carlo Simulation Modeling, the cardinal rule of risk
analysis modeling is: “Every iteration of a risk analysis model must represent a scenario that could
physically occur.”  Following this rule will lead to a model that is both accurate and realistic.   As an
example, it would be improper to model a cow diet as a random sampling of feeds with established
tolerance for the pesticide of interest since many of the diets generated in such a manner would be
unreasonable with respect to the roughage/nonroughage components, carbohydrate/protein mix, commodity
combinations, and economic constraints.  In short, blind application of Monte-Carlo techniques without
regard for the reality of the generated scenarios will produce  absurd results with no basis in reality.  The
analyst should ensure that each of the hundreds or thousands of iterations is a scenario with real-world
possibilities.
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It is often tempting in risk analysis modeling to include very unlikely events that would have a very large
impact should they occur.  A rare event of concern is defined as an event that has a low probability of
occurrence but a potentially high impact on the results of a  risk analysis. The expected impact of a rare
event is determined by two factors: the probability that it will occur and  the distribution of possible
impacts.  For example, widespread systematic illegal use of a pesticide or gross calibration errors in a
pesticide’s application  might be a situation which occurs to some unknown (but relatively insignificant)
extent.   Since the probabilities of these events are so difficult to quantify,  their determination provides a
stumbling block for the analyst.  However, since it is  impossible to cover all scenarios that might exist and
to calculate the probability of such occurrence, including the rare event in the general model will not
increase our understanding of reality and will limit the clarity of the model.

Random Nature of the Monte Carlo Analysis.

Integral to any Monte-Carlo analysis is the generation of random numbers.   Similar to rolling dice, the
software has a ‘random number generator’ that produces a random sequence of numbers.  Two main forms
of sampling are Random Sampling (also called Monte Carlo Sampling) and Latin Hypercube sampling. 
Random or Monte Carlo sampling will evaluate the probability distributions in a purely random fashion,
and is useful in trying to get the model to imitate a random sampling from a population or for doing
statistical experiments.  However, the randomness of this sampling suggests that, unless a very large
number of iterations are performed, it will over-sample some parts and under-sample other parts of the
distributions. Because for nearly all risk analysis modeling exploration of the distribution extremes (the
“tails”) is important, exact reproduction of the contributing distributions of the model becomes essential. 

Latin Hypercube sampling (LHS) addresses this issue by providing a sampling method that appears
random but that also guarantees to reproduce the input distribution with much greater efficiency that the
random sampling.  LHS uses a technique known as stratified sampling without replacement.  It breaks the
probability distribution into ‘n’ intervals of equal probability, where ‘n’ is the number of iterations to be
performed on the model.  Then, at random, one sample is drawn from each section, forcing, this way, an
equal-chance representation of all the portions of the distribution.  The Latin Hypercube method leads to a
predictable uniformity of the sampling of the distribution.

For More Information

Use of Probabilistic Techniques (Including Monte Carlo Analysis) in Risk Assessment,
Memorandum from the Office of the Administrator,  U.S. Environmental Protection Agency,
May 15, 1997

Policy for Use of Probabilistic Analysis in Risk Assessment at the U.S. Environmental Protection Agency. 
U.S. EPA, Office of Research and Development, May 15, 1997.  
(http://www.epa.gov/ncea/mcpolicy.htm)

Vose, David.  Quantitative Risk Quantitative Risk Assessment: a Guide to Monte-Carlo Simulation
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Modeling.  John Wiley and Sons (1996)

ATTACHMENT 3: Distribution Selection
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Section I   Introduction
EPA has recently established a policy and a series of guiding principles for the use of various probabilistic risk
assessment techniques.  The policy states that probabilistic risk analysis techniques (including Monte-Carlo
analyses) can be viable statistical tools for analyzing variability and uncertainty in risk assessments provided that
adequate supporting data are available and credible assumptions are made.  The policy goes on to state that when
risk assessments using probabilistic techniques are submitted to the Agency for review and evaluation, a number of
conditions must be satisfied: these conditions relate to the good scientific practices of transparency, reproducibility,
and the use of sound methods (memo from F. Hansen, 5/15/97).  One of these specific conditions of acceptance
states that 

The methods used for the analysis (including all models used, all data upon which the assessment
is based, and all assumptions that have a significant impact upon the results) are to be documented
and easily located in the report.  This documentation is to include a discussion of the degree to which
the data used are representative of the population under study.  Also, this documentation is to include
the names of the models and software used to generate the analysis.  Sufficient information is to be
provided to allow the results of the analysis to be independently reproduced.  

     
The Agency simultaneously released a series of sixteen “Guiding Principles” for the use of Monte-Carlo analysis
and an Appendix dealing with the  selection of appropriate input probability distributions for these analyses.  The
intent of the current  document is to further develop these  principles and guidelines for use by pesticide registrants
and other interested parties by defining what we in OPP’s  Health Effects Division (HED)  see as key criteria which
a risk assessments  using Monte-Carlo risk assessment techniques must adequately address.  Specifically, this
chapter explores the various plots,  tests,  techniques, and analyses  which could be used to define an adequate
probability distribution for  use as an input parameter for a Monte-Carlo assessment submitted to HED.      

Monte-Carlo Modeling Options
 
Once the raw input data on the exposure variable of interest is collected, a risk assessor has available a number of
techniques for representing the exposure variables in a Monte Carlo analysis. 

C an assessor  can use the data values themselves directly in the simulation in what is termed a “trace-
driven” simulation.  In this technique, values from the raw input data are repeatedly selected in a
random manner  and used to calculated  model outputs;   

C an assessor can use the data to define a non-parametric empirical distribution function (EDF) where the
data values themselves are used to specify a cumulative distribution and the entire range of values
(including intermediate points) is used as model inputs.   With this technique, any value between the
minimum and maximum observed values can be selected and model input is not limited to the specific
values present in the measured data. 

      C an assessor  can attempt to fit a theoretical or  parametric distribution to the data using standard
statistical techniques and input parameters to the model can be selected from this fitted distribution.  
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There are a number of  potential benefits for making distributional assumptions about exposure data (du Toit et al,
1986; Law and Kelton, 1991).  For example,   

1)  Distributional assumptions permit the data to be represented compactly. A data set containing a potentially
large amount of   information can be summarized as a probability distribution model described by only a
few parameters.   Empirical distributions require that each data point be represented and can result in a
data set that is cumbersome and difficult to use if the data set is large.    

2) Distributional assumptions (and the exploratory data analysis which precedes them) may lead to a clearer
understanding of the underlying physical mechanisms involved in generating the data and vice-versa.

3)  Distributional assumptions permit data to be generated which are outside the range of historically
observed data.  This can be useful since many measures of performance for simulated systems depend
heavily on the probability of an “extreme event” (i.e., one outside the range of the observed data) occurring. 
Empirical distributions, which rely solely on past data when used in the usual manner, can tend to
underestimate the probability of an extreme event.  

4) Distributional assumptions permit the data to be “smoothed out” which may more accurately reflect real-
world values.  Empirical distributions, on the other hand,  may contain certain artifactual irregularities,
particularly if only a small number of data values are available.    

On the other hand, some authors prefer EDFs (Bratley, Fox and Schrage, 1987) arguing that the smoothing which
necessarily takes place in the fitting process distorts real information.  In addition, when data are limited, accurate
estimation of the upper end (tail) is difficult. Unfortunately for the assessor, there is no consensus as to which
method is best.   Despite the above reasons supporting the use of a parametric distribution developed from
distributional assumptions,  the decision to seek an analytic form to represent the data is ultimately a choice which
rests with the assessor.  In general, the use of parametric (theoretical) distributions may be preferable to the use of
empirical distributions when the data are limited, the fit of the theoretical distribution to the data is good, and there
is a theoretical or mechanistic basis which supports the chosen parametric distribution.  The process of selecting
probability distributions and evaluating the goodness-of-fit is a process that requires judgement.   Ultimately, the
technique selected will be a matter of the quality and quantity of the data under evaluation and the assessor’s
exercise of intelligence, creativity, and honesty in assessing the variability and uncertainties inherent in the risk
assessment problem.  

Organization of Document

Section I of this document is this introduction to Monte-Carlo methods and a brief description of the advantages of
disadvantages of parametric methods  (i.e., methods which make assumptions about underlying distributions to
develop theoretical distributions) and non-parametric methods (which utilize the data directly in forming an
empirical distribution, thereby making no assumptions about underlying distributions).  

Section II of this document focuses on parametric methods for characterizing and quantifying stochastic variability. 
In this section, it is explicitly assumed that the risk assessor has previously made the judgement that the data in
hand are of acceptable quality and are acceptably representative of the exposure variable of interest.  The
discussion in this parallels the Guiding Principles section and Technical Appendix of the Agency’s policy for Monte
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Carlo Analysis, expanding these elements to provide more technical detail.  The general outline in Section II follows
that developed by Law and Kelton (1991).  It is organized around three fundamental activities:  

(I) selecting candidate theoretical distributions to determine which general families appear to be
appropriate to use on the basis of the shape, summary statistics, and simple distributional
plots; 

(II) estimating the intrinsic parameters of the candidate distributions to define the specific
distribution; and 

(III) assessing the quality of the resulting fit by examining how closely they represent the true
underlying distributions for the data of interest and using various Goodness-of-Fit (GoF) tests.  

Assessors have a wide variety of commercially available distribution-fitting programs, spreadsheets,  and dedicated
statistical packages to assist them in deciding whether or not their data can be adequately represented by  a
theoretical distribution function.  It is expected that most assessors will make use of one or more of these programs
in fitting exposure data.  While these programs can save a tremendous amount of work, their use should never be
reduced to a simple mechanical exercise of importing the data, running the analysis and picking the “best fitting”
distribution returned by the program.  Furthermore, despite their obvious utility, many of the commercial fitting-
packages are limited for  fitting exposure data.  For example, most fitting packages currently available cannot fit
singly or multiply censored data, truncated distributions, or  distributional mixtures.  For these data, the assessor
will have to seek more selective, powerful tools.  

Many  times in Monte Carlo analyses, an empirical distribution function (EDF) is used to characterize a model
variable if  the risk assessor has determined that the data themselves provides the best representation of the
exposure variable. In Section III,  we define an EDF and discuss the conditions under which the use of an EDF 
may be preferable to a CDF. The choice of whether or not to use an EDF in an assessment employing Monte-Carlo
methods is ultimately up to the risk assessor and his/her level of comfort and confidence with the data and the
method.  Several approaches used to implement EDFs are also discussed.   

Throughout Sections II and III, each key idea will be illustrated through a case study example.
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Section II   Parametric Methods
Parametric methods (as opposed to the non-parametric or empirical methods discusses in Section III) rely on a
mathematical description of the distribution of values generated by a process.  This section of the document
describes the three standard activities (selecting candidate distributions, estimation of parameters, and assessing
goodness-of-fit) used to describe the distribution and the adequacy of this description.   The general outline follows
that developed by Law and Kelton (1991).

Activity I  !!  Selecting Candidate Distributions

Activity I involves the use of prior knowledge and exploratory data analysis to make preliminary assessments of
which general families of distributions appear to best match the input data.  This evaluation is performed on the
basis of the shape, summary statistics, and simple distributional and graphical plots of the input data and does not,
at this stage, involve the estimation of the specific statistical parameter values associated with each of these
families.    

Knowledge of the various properties and parameters associated with any of the various potential distributions can
aid in the selection of an appropriate distributional family.  Figure 1 provides a flow chart which may be used as a
guide to selecting potential distributions for further analysis based on prior knowledge of distribution
characteristics.  It is not intended to be all-inclusive, but does cover a range of distributions which might be
commonly seen in the area of exposure and health risk assessment.

Make Use of Prior Knowledge

The choice of input distribution should always be based on all relevant information (both qualitative and
quantitative) available for a parameter.  In selecting a distributional form, the risk assessor should consider the
quality of the information in the database and ask a series of broad questions which might  include the following:

Is there any mechanistic basis for choosing a distributional family?  Is the shape of the distribution likely
to be dictated by physical or biological properties or other mechanisms?  Ideally, the selection of
candidate probability distributions should be based on consideration of the underlying physical processes or 
mechanisms thought to be key in giving rise to the observed variability.  For example, assume that a
persistent systemic pesticide is present  in a lettuce plant and is not degraded or metabolized.  If, due to
weekly variations in sunlight, rainfall, and nutrient availability, the mass of each lettuce leaf increases each
week by some random independent proportion of the mass achieved during the previous week, the
distribution of residues in these lettuce plants will be lognormally distributed (Ott, 1995);  in this case, the
residue concentrations can be expressed as a random proportion of the quantity present in the immediately
prior state.  If each successive proportion is independent of the one before and  many weeks pass between
the initial and final states, the final residue concentration in the lettuce plant can be expressed as a product
of random variables which gives rise naturally to a lognormal distribution.  In general, if an exposure
variable is the result of the product of a large number of other random variables, it would make sense to
select a lognormal distribution for testing.  As another example, the exponential distribution would be a
reasonable candidate if the stochastic variable represents a process akin to inter-arrival times of events that
occur at independent constant rates.  

Is the variable discrete or continuous?   Can the variable only take on discrete values or is the variable
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continuous over some range?  A discrete variable may only take one of several specific values, whereas a
continuous variable may take on an infinite number of values.  Examples of discrete variables would
include whether the crop is treated or not (e.g., 0 or 1), the  number of times a given  pesticide is applied
per season, or the number of showers taken per week.   Examples of continuous variable include the residue
concentration of a given pesticide in a tomato, the amount of pesticide a.i. applied per acre in a season, or
drinking water consumption rate.    

Is the variable bounded or unbounded?  If bounded, what are the bounds of the variable?   What is the
physical or plausible range of the variable? Is it  semi-infinite (X>b)?  Does it take on only positive values
(X>0)?; Is it bounded by the interval [a,b]? A properly-fitted distribution should cover the range of values
over which the modeled variable could theoretically extend. If a fitted distribution extends beyond the range
of plausible values, then the model will produce implausible scenarios at the extreme tails of the
distribution.  Conversely, if a fitted distribution fails to adequately extend to cover real-world limits, the
resulting model will not reflect the true nature of the potential variability. 

Beta distributions are examples of bounded continuous distributions which might be considered for percent
foliar dislodgeable residue (%FDR) which could vary between 0% and 100%, for example.  Unbounded
continuous distributions include the normal distribution: these distributions can sometimes be truncated, if
necessary, to represent variables which have natural or practical physical limits (e.g., body weight).  Semi-
infinite continuous distributions (X>0) include the exponential distribution, the gamma distribution, the log-
normal distribution, and the Weibull distribution.  These distributions are all bounded on one-side
(sometimes by 0) and extend to infinity and may describe variables which are censored due to limits of
detection  or some aspect of the experimental design.  It is important to note that a correctly fitted
distribution can extend beyond the range of observed data. This is expected since data are rarely observed
at the theoretical extremes for the variable in question.

Are historical data available? Is it known that a variable of interest has been found to consistently have
a certain distribution type in other data collection and distribution fitting research?  Previous data may
be available for similar (or even identical) situations.  For example, environmental concentrations of a
contaminant have sometimes to be found to be lognormally distributed.  Time to complete certain tasks
have been shown to follow in some cases a Weibull distribution.  Human body weights have been modeled
as a normal or log-normal distribution (Burmaster and Crouch, 1997).  Consumption of water  have been
shown in some instances to be adequately represented by a log-normal distribution (see, e.g., EPA’s
Exposure Factors Handbook, the AIHC’s Exposure Factors Sourcebook), or Roseberry and Burmaster
(1997). A registrant should be aware of past modeling attempts to incorporate distributional information
and may wish to incorporate this into its own assessments. 

Does the sample represent a single population, or is the sample drawn from a mixture of
subpopulations?  Mixture models arise frequently in exposure and risk assessment.  Discrete mixture
distributions occur when the population of interest consists of a number of distinct subgroups, each with
their own unique distribution.  For example, different agricultural occupational groups may have different
exposure distributions as a result of differing activities; produce grown in different regions of the country
may have systematic differences in  pesticide residue concentrations due to systematic differences across
the U.S. in rainfall and  rainfall patterns, soil types and conditions, and length of the growing season .
Multi-modality provides a first strong suggestion that the observed sample is drawn from a mixture of
distributions and is therefore not homogenous. As a second step, statistical tests (e.g., the non-parametric
Kruskal-Wallis test) are available for assessing the homogeneity of different data sets (e.g., Florida residue
data vs. California  residue data) and determining whether the data sets can  indeed be merged into the
single residue distribution.  Distinguishing between these different subgroups can be important for both
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scientific evaluations of risk and evaluations of different distributional issues.  When these differences are
recognized and the subgroups identified, the overall distribution can be built up from the individual
distributions of the various subgroups.    

Explore the Data
Exploring the data is an important step in the process of selecting plausible distributions.  Exploratory data analysis
can be thought of as consisting of two steps: (1) characterizing the data through the use of summary statistics and
(2) graphical data analysis. 

Summary Statistics.  Summary statistics are useful for initially characterizing or describing the data.  Common
summary statistics fall into three basic groupings: (1) measures of central tendency or location, such as the mean
or median;  (2) measures of dispersion or spread, such as the variance; and (3) measures of shape or skewness.
  

Measures of central tendency are intended to indicate the “center” of the data and commonly include the
mode, median, and mean.  Other measures of location include the geometric mean and trimmed mean
(Helsel and Hirsh, 1992).  

Measures of spread are intended to indicate how dispersed the data are relative to some central value or 
specify the distance between selected observations.  Common measures of spread include the range, inter-
percentile ranges (e.g., inter-quartile range), standard deviation, variance, and coefficient of variation.

Measures of shape are intended to provide insights to the symmetry or asymmetry in the distribution of the
data.  The most frequently used measures of shape are skewness (asymmetry) and kurtosis (degree of
peakedness).  In some cases, these summary statistics can be used to suggest one or more appropriate
distribution families for further testing as part of Activities II and III.  For symmetric continuous
distributions such as the normal, the mean and the median are equal.  Thus, if the mean and median for any
given data set are approximately equal, one might consider further analysis of the data to test the
hypothesis that the distribution is normal.  For exponential distributions, the coefficient of variation
(defined as the standard deviation divided by the arithmetic mean, and sometimes expressed as a percent) is
equal to 1 (or 100%).  Therefore, if the mean and standard deviation of any given data set are numerically
similar, an exponential distribution might be an appropriate distribution to hypothesize.  Skewness and
kurtosis values, considered together, can be used to assist in distribution selection  The skewness value is a
measure of the symmetry of the data, with perfectly symmetric distributions (like the normal) having a
skewness value of zero. Right-skewed distributions, like the right-skewed lognormal, have positive
skewness values whereas left skewed distributions have negative skewness values. Exponential
distributions have a skewness value of 2. Thus, if a set of data has a coefficient of variation of
approximately 1 and a skewness of approximately  2, an exponential distribution would be appropriate to
consider. Many statistical and spreadsheet packages have built-in features for automatically calculating
many summary statistics.  Simply inspecting these output values can aid substantially in determining
candidate distributions for further analysis. 



A3-8



A3-9

BOX 1:    Hypothetical Pesticide
Concentrations in Tomatoes (ppm)

110.5
147.5
111.6
139.0
72.9
109.8
94.8
68.8
142.3
70.8
74.6
169.7
143.7

204.3
148.3
66.9
53.6
68.5
108.0
97.6
78.2
68.2
80.3
267.7
170.0

BOX 2: Summary Statistics for Hypothetical
Pesticide Concentration in Tomatoes (ppm) 

      

 Box 1 lists data used as the case study throughout this
section.  The data in this Box  represent a set of 25
hypothetical residue values in tomatoes.  Several summary
statistics for these residue data are shown in Box 2.  A quick
visual  inspection of the data can reveal a number of
important insights.  Box 3  illustrates some of these insights
for  the sample tomato pesticide data.

Graphical Data Analysis.  The risk assessor can often gain
important insights by using a number of simple graphical
techniques to explore the data prior to numerical analysis. 
The importance of this phase of visual inspection cannot be
over-emphasized.  A wide variety of graphical methods have
been developed to aid in this exploration including frequency
histograms, stem and leaf plots, dot plots, line plots for
discrete distributions, box and whisker plots, and scatter plots
[Tukey (1977);; du Toit et al. (1986); Morgan and Henrion,
(1990)].  These graphical methods are all intended to permit visual
inspection of the density function corresponding to the distribution
of the data.  They can assist the assessor in examining the data for
skewness, behavior in the tails, rounding biases, presence of multi-
modal behavior, and data outliers.  Graphical methods, however,
can be highly misleading in the face of considerable uncertainty due
to small sample size or a high coefficient of variation.  

A frequency histogram is a graphical estimate of the empirical
probability density function and can be compared to the
fundamental shapes associated with standard analytic distributions
(e.g., normal, lognormal, gamma, Weibull).  Law and Kelton
(1991) and Evans et al. (1993) have prepared a useful set of figures
which plot many of the standard analytic distributions for a range of
parameter values.  Frequency histograms can be plotted on both
linear and logarithmic scales and should be plotted to avoid too
much jaggedness or too much smoothing (i.e., too little or too much
data aggregation).  If the appearance of the histogram does not
change much when varying the bin width over a reasonably wide
range, then the data analyst can feel confident that any observed
patterns are genuine.  If,  on the other hand, the appearance changes
in a fundamental way depending on the selected bin width, any
observed patterns at a specific bin width may be an artifactual and
should not be trusted.  As a starting point, some authors suggest
that it may be useful to select the number of bins according to k = 1
+ 3.322 log  10 n where n is the number of data points.

Line graphs apply to discrete random variables and are estimates of the probability mass function. In a line graph,
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BOX 3: Distributional and Statistical Insights into
Hypothetical Tomato Pesticide Data Set

A number of important insights on the data and its
distributional form can be gained by inspecting the
summary statistics commonly provided by standard
statistical packages.  If the distribution is normal, for
example, the mean will be approximately equal to the
median. From the statistics provided in Box 2, we see
that the median of 108.0 is located within the 95%
confidence interval of the mean (i.e., 93.6  to 135.8). 
We also see that  the coefficient of variation of 0.446
(44.6%, as indicated in the statistical output) is less
than 1, indicating that a normal distribution might be
appropriate to hypothesize.  Since  the mean of 114.7
and standard deviation of 51.2 are not equal,  an
exponential distribution is unlikely to be appropriate. 
The skewness value of 1 (as opposed to 2) further
supports the elimination of the exponential distribution
as a viable candidate for further consideration.  

the proportion of values in the sample data set equal to a particular discrete value are plotted and compared, on the
basis of shape, to the probability mass functions for discrete distributions (e.g., binomial, geometric, Poisson,
negative binomial, etc.). 
 
Box plots (Tukey box plots, box and whisker plots) can be a
very effective graphic display for summarizing the distribution
of a data set.  Box plots provide easily explained and easily
comprehended visual summaries of:

• the center of the data (median - the center line of the
box)

• the spread in the data (inter-quartile range - the box
length)

• the skewness (quartile skew - the relative size of the box
halves)

• the range (whiskers - lines from the ends of the box to
the maximum and minimum of the data or to some other
selected endpoint, e.g., the 5th and 95th percentiles,
etc.)

There are three basic versions of the box plot: (1) the simple box
plot, (2) the standard box plot, and (3) the truncated box plot.  
In the commonly-used standard box plot, the whiskers extend only to the last data point within one step beyond
either end of the box.  A step is defined as 1.5 times the length of the box or approximately 1.5 times the inter-
quartile range.  Data points beyond 1.5 steps of either end of the box are plotted as individual points.  When
constructed in this manner, the box plot provides a rapid visual impression of the prominent features of the data.
The  median (or central line within the box) shows the location of the center  of the data. The spread of the  central
50% of the data are represented by the length of the box.  And the length of the whiskers (relative to the box)  show
how stretched the tails of the distribution are.  Individual points which extend beyond the whiskers are outside
values which may  be further investigated and provide clues as to the distributional form. If the distribution is
symmetric (e.g., as with a normal distribution), the box will be divided into two equal halves by the median, the
upper and low end whiskers will be the same length, and the number of extreme data points will be distributed
equally on either end of the plot   Two other kinds of box plots (simple and truncated box plots) are more fully
discussed by Helsel and Hirsh (1992).

 Because of  the variety of box plots available, the potential for confusion exists and all box plots submitted to
HED should be clearly labeled as to which values are being represented.

Formal Tests  for Normality and Lognormality

While examination of the summary statistics, frequency histograms, and  box-and-whisker plots associated with a
data set are useful exercises in exploratory data analysis, several procedures are available to formally test for
normality (or lognormality when log-transformed data are used) and can be used to confirm the assumption of
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BOX 4: Frequency Distribution Histograms
for  Hypothetical Pesticide Data  

For a histogram of the pesticide residue data,
the initial number of number of bins is
estimated as k = 1 + 3.322 log 10 (25). 6 
The figures below show histograms for the
tomato residue data for 3, 6, and 9 bins.  For
these data, 6 bins appear to strike a
reasonable balance between too much
smoothing for the 3 bin histograms and too
much jaggedness apparent for the 9 bin 
histogram .

normality/lognormality.  Such  tests include Shapiro-Wilks test (for sample sizes #  50),  D'Agostino's test (for
sample sizes $ 50), and  Filliben’s statistic (sample size >50), which is an extension of the Shapiro-Wilk test.  The
Shapiro-Wilk and D'Agostino tests are the tests of choice when testing for normality (or lognormality) and are more
fully described in a number of standard texts.  While the Shapiro Wilk test is one of the most powerful tests for
normality, it is difficult to implement by hand as it involves calculating a correlation  between the quantiles of the
standard normal distribution and the ordered values of the data set.  It is, however, easily implemented as part of
many statistical software packages.  These tests (and many more)  are more fully discussed in the EPA publication
Practical Methods for Data Analysis (U.S. EPA, 1996).  This EPA publication is available on-line and can be
downloaded in PDF format (see References and Suggested Readings for http:// address)

It is important  to remember during this activity that it is less
critical for the analyst to be able to state with absolute certainty
that the data are distributed in the hypothesized manner (e.g.,
lognormally) than it is to determine that the hypothesized
distribution is “adequately representative” of the data.  The
basic question to be answered in the affirmative is whether the
empirical distribution of the data is sufficiently well-
approximated by the hypothesized distribution for the intended
purpose.  

Knowledge of the various properties and parameters associated
with any of the various potential distributions can aid in the
selection of an appropriate distributional family. A list of
selected theoretical distributions is included in Table 1 along
with a brief description of some of their potential uses.   As
with Figure 1, it is not intended to be all-inclusive, but does
cover a range of distributions which might be commonly seen in
the area of exposure and health risk assessment.
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BOX 5: Determination of the Appropriate Distributional Family for the Hypothetical Residue Data

Box 4 suggested that a normal distribution would be appropriate to hypothesize for the hypothetical pesticide data. 
However, the box and whiskers plot of the actual data reveals a decidedly right-skewed distribution; in addition the
Shapiro-Wilk statistic of 0.88 (p<0.0063) also suggests that a normal distribution is not appropriate.  As indicated before
(and confirmed by the shape of the histogram and box-and-whisker plot), an exponential distribution is also inappropriate
for further consideration.  Log-transformation of the hypothetical data produces a symmetric mound-shaped histogram and
a box-and-whisker plot showing characteristics of the normal distribution (eg., a box divided into two equal halves by the
median, whiskers of similar length, and an equal number of extreme data points on either end of the plot).  The summary
statistics further suggest that a lognormal distribution may be appropriate (mean . median and a skewness value
substantially closer to 0); the  Shapiro-Wilk test (W = 0.951 with p = 0.27) confirms this as an appropriate distribution for
further consideration and analysis as part of Activity II.   

Having determined that the log-normal distribution is the distribution most appropriate for further analysis, the two
subsequent activities are determining the most appropriate distribution (Activity II) and performing tests to verify that the
selected distribution and its parameters adequately fit the empirical data.   
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Table 1   Selected Theoretical Distributionsa

Distribution Type Distribution Description

Discrete 
Bernoulli

     binomial

    

    discrete uniform

       geometric

 
The Bernoulli distribution is used to model random events when there are only two
possible outcomes (e.g., success or failure, treatment or no treatment) and is used to
generate other discrete random variables (e.g.,  binomial, geometric, and negative
binomial).  A Bernoulli random variable can be thought of as the outcome of an
experiment that either “fails” or “succeeds” and is fully characterized by its parameter
p, representing the probability of an event occurring. 

The binomial distribution models the number of successes in n independent Bernoulli
trials, with the with probability p of success in each trial.  It is produced by processes
that (1) can produce only one or the other or two outcomes and (2) are carried out a
finite number of trials.   It is fully characterized by the parameters n, p, and  x
representing the number of trials, the probability of success in each trial, and the
number of successes, respectively.  

The discrete uniform distribution models random occurrences when there are several
possible outcomes, each outcome with the same probability of occurrence.  Typically
used as a “first” model for a quantity that is varying among integers, but about which
little is known.  

The geometric distribution models the number of failures before the first success in n
independent Bernoulli trials, each trial with an identical probability of success.  It is a
direct analogue of the exponential model except is limited to integers.    

.
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Bounded Continuous 
beta

triangular, log-triangular

uniform, log-uniform

The beta distribution is a very flexible distribution capable of exhibiting a wide variety
of shapes. It is often used to model bounded data, to model distributions for proportions
or fractions, or to model time to complete some task. It can also be used as a rough
model in the absence of data (see Law and Kelton, 1991). Two parameters suffice to 
describe this distribution (á1, á2) 

The triangular distribution is often used a rough model in the absence of data when the
values toward the middle of a range of possible values are more likely to occur than
values near either extreme.  There is no mechanistic basis for this model which is
typically used to represent subjective uncertainties.   If the range covers several orders of
magnitude, the log-triangular distribution is sometimes used.   The minimum,
maximum, and most likely value suffice to describe this distribution. 

The uniform distribution is often used in the absence of data as a crude model when the
quantity is known to randomly vary between known limits but where little else is
known.  Its use is appropriate when we are able to identify a range of possible values,
but are unable to determine which values within the range are more likely to occur than
others.  The minimum and maximum values suffice to describe this distribution.  If the
limits cover several orders of magnitude, the log-uniform is sometimes used.

Unbounded Continuous
normal The normal distribution models phenomena that are the result of the sum of many other

random variables (by the Central Limit Theorem).  In other words, if a large number of
variables are added together (such that no one variable contributes a substantial amount
to total variation), the result will take the shape of a normal distribution.   These 
frequently involve small measurement  errors of various types and any process whose
final outcome is the result of many independently determined sums. The mean and
standard deviation suffice to describe this distribution.  The skewness of the normal
distribution is 0 (it is symmetric) and the kurtosis is 3.  

As negative quantities can be generated with the normal distribution, this is in some
cases theoretically inappropriate.  However, as long as the coefficient of variation of less
than ca. 0.2, generation of negative values is sufficiently improbable  so as not to be of
concern since the probability of generation of values more than five standard deviations
from the mean is  quite small.    
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Non-negative Continuous      
     exponential

    

 

      gamma

    lognormal

     

     Weibull

 When events are purely random, the times between successive events are described by
an exponential distribution.  The exponential distribution  is frequently used to
describes the time between events for Poisson processes (i.e., processes for which the
probability of an event per unit time interval is constant and independent of the number
and timing of   events which occurred in the past)  or the fraction of individuals (or
anything else) remaining in a system at various times after the start of an exponential
decline. The mode of exponential distribution is zero and the probability of occurrence
continually decreases with increased values.  The skewness of an exponential
distribution is two. This  distribution  complements the Poisson distribution which
characterizes the number of occurrences per unit time and is a special case of the
gamma and Weibull distributions.   The exponential is less tail-heavy than the
lognormal and extreme values therefore have a lower probability.  It is characterized by
a single parameter (â), representing the mean time between events.
  
The gamma distribution includes  is widely used in environmental analysis to
characterize pollutant concentrations as well as used in meteorological processes to
characterize precipitation. It is also commonly used to represent the time to complete
some task.  The tail of the gamma distribution is not as tail-heavy (long) as the
lognormal and it therefore ascribes a lower probability to extreme values than does the
lognormal distribution .  The gamma is typically describe by two parameters, a shape
parameter and a scale parameter.   When the shape parameter is 1, the distribution is
equivalent to the exponential distribution.

The lognormal distribution models quantities that are the product of a large number of
other quantities (i.e., if one were to multiply  a large number of random variables
together, the result will tend toward a lognormal distribution).  This distribution results
when the logarithm of a random variable is described by a normal distribution .  It is
widely used in environmental analysis to represent positively valued data exhibiting
positive skewness.  Examples include concentrations of chemicals in environmental
media and amounts of those media which are consumed, efficiencies of absorption, and
rates of elimination of toxicants.  The lognormal distribution has a heavier (longer) tail
than the exponential, gamma or Weibull distributions.   There are three common ways
to parameterize a lognormal distribution: (1) arithmetic mean and standard deviation of
the log-transformed variables; (2) geometric mean and standard deviation of the non-
transformed variables; and (3) arithmetic mean and standard deviation of the non-
transformed variables. 

The Weibull distribution is widely used in life data analysis, time to complete some
task, and time to equipment failure. The Weibull distribution is less tail heavy than the
lognormal and thus ascribes a lower probability to extreme events.  It is typically
described by two parameters, a scale parameter and a shape parameter.  As with the
gamma distribution, the distribution is equivalent to the exponential distribution  when
the shape parameter is 1,

The above information was obtained mainly  from  Hattis and Burmaster (1994), Vose (1996),  Law and Kelton (1995), and Morgan and
Henrion (1990)

aNote: Distributional plots, probability and cumulative density functions, interpretation of distributional parameters,  formulae for important
statistical terms (e.g., mean, standard deviation, etc.)  are available from the literature (e.g., see Law and Kelton (1995), Vose (1996) and
Evans et al. (1993))



1 Specialized statistical software is available to create normal probability plots.  Alternatively, one
can create these plots using certain spreadsheet software.  For example, to create a normal probability plot
using Excel or Quattro Pro, first rank the observations (r 1, r2, r3, ... rn) in ascending order (from lowest to
highest) and assign each observation a rank (e.g, lowest observation receives a rank of 1, the next receives
a rank of two, all the way to the Nth observation which receives a rank of N).  For each observation, the
cumulative rank is then calculated using a plotting position formula (e.g., the Weibull plotting position
formula r I /n+1).   This can be considered similar to a  percentile value except percentile values range to
100%.  Next, the normal quantile is calculated for each cumulative rank:  the normal quantile is the z-score
associated with each percentile and can be determined using Excel's NORMSINV function.  Finally, each
observation’s normal quantile (or z-score) is plotted on the x-axis against each observation on the y-axis.    
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Activity II  !! Estimation of Parameters

Once a candidate distribution family is selected (e.g., a lognormal distribution), we estimate the parameters of the
candidate family in order to have a completely specified distribution for use in the simulation. Parameter estimation
is generally accomplished using conventional statistical methods, the most popular of which include the method of
maximum likelihood, probability plotting methods, and the method of moments.  See   Law and Kelton (1991),
Evans et al. (1993), Gilbert (1987), and Vose (1996).

Parameter Estimation Methods

Maximum Likelihood Method.  Probably the most often-used method for estimating the parameters of a
distribution is the method of maximum likelihood.  For some distribution families (e.g., normal, exponential,
geometric),  maximum likelihood estimators  (MLEs)  are well-defined values resulting from a straightforward
algebraic calculation, but for others solving the equations is computationally intensive and special software is
required.  

There are a number of references which derive the MLE for several common distributions (e.g, Vose (1996), Ott
(1995) Evans et. al. (1993)).  For the purposes of this document we will simply state that the MLE for the mean
and standard deviation of a normally distributed population are simply the mean and standard deviation,
respectively, of the observed sample data.  For the exponential distribution, the MLE for the single parameter of the
exponential distribution is the mean of the observed sample data.  For the geometric distribution, the MLE for the p
parameter is 1/(00 +1).

Probability Plotting Methods.  Probability plotting methods, sometimes called linear least square regression
methods  or regression on order statistics, are based on finding probability and data scales so that the theoretical
cumulative distribution function plots as a straight line.  The transformed data is then plotted against the linearized
CDF and ordinary linear regression is performed to estimate the parameters of the fitted distribution. This method is
applicable to theoretical distributions whose CDFs are expressible as a function of one or two parameters, for
example, the exponential, normal, lognormal, and Weibull distributions. The following are instructions for
linearizing the CDF and estimating the parameters of the fitted distribution:  

For a distribution which has been hypothesized to be normal
Construct a normal probability plot with z(p) on the abscissa (the “x” axis)  vs. each x n value on the
ordinate (the “y” axis)1.  If the normal probability plot is a straight or near-straight line, this is evidence
that the distribution is normal and the data are well-modeled by a normal curve.  Using ordinary least-
squares regression, calculate the slope of the fitted line and its intercept.  The intercept is an estimate of the
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arithmetic mean of the distribution while the slope  is an estimate of the arithmetic standard deviation of the
distribution. These values should be compared with (and comparable  to) the values calculated using ML
method described above.  The uncertainty in these parameter estimates can be roughly gauged by the
statistical confidence interval about the intercept and slope as determined by the linear regression statistics.

For a distribution which has been hypothesized to be lognormal
Calculate the natural logarithms of each of the x n values for n = 1 to N.  Construct a normal probability
plot with z(p) on the abscissa (the “x” axis) vs. each ln [x n] value on the ordinate (the “y” axis) as
described in the previous footnote (except than ln [x n] is substituted for [x n]).  If the lognormal probability
plot is a straight or near-straight line, this is evidence that the distribution is lognormally distributed and the
data are well-modeled by a lognormal distribution.  Using ordinary least-squares regression, calculate the
slope of the fitted line and its intercept.  The slope is an estimate of the mean of the natural logarithms of
the distribution (µN) while the intercept is an estimate of the standard deviation of the logarithms (óN).
These values should approximate the values for the mean and standard deviation, respectively, calculated
by the following formulae:

To calculate the arithmetic mean and standard deviations from these regression values (i.e., to define the
distribution in its original terms), the following formulae are used: 

For a distribution which has been hypothesized to be exponential
First, calculate the cumulative frequency by ranking the observations from lowest to highest as described in
the previous footnote.  Then, for each ranked observation subtract this quantity from 1 and take the natural
logarithm of this difference. Plot this value on the y-axis vs. each individual data point on the x-axis.  If the
plot is reasonably straight, this is evidence that the distribution is exponentially distributed.  Using ordinary
least-squares regression, calculate the slope of the fitted line fixing the y-intercept of the regression line at
the point (0, 1).  The calculated slope of this line is the â parameter appearing in the exponential model
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[f(x) = 1 - e -x/â] and should be compared with (and comparable to) the value calculated from the ML
method for exponential distributions described above.  As before, the uncertainty in this parameter estimate
can be roughly gauged by the confidence interval about the slope as determined from the linear regression
statistics.  

For a distribution which has been hypothesized to be Weibull

   The two characteristic parameters of a Weibull distribution (i.e., the scale and shape parameters) can most
easily be determined by either using dedicated statistical distribution fitting software or by plotting the data
on specialized commercially-available Weibull probability paper  (e.g., see Craver (1996)) .  In the latter
case, the Weibull scale and shape parameters can be read directly from the probability plot.  For a Weibull
curve (with a location parameter of 0), the scale parameter is typically represented by the 63.2 %-ile.  

Weibull plots can also provide information about other potential distribution families.  For example, the
slope of the plotted points provide additional information about the distribution family or class with slopes
of 1, 3, and 5 evidence of exponential, lognormal, and normal distributions, respectively.  

For a distribution which has been hypothesized to be Beta

   As with the Weibull distribution, characteristic parameters of a beta distribution can most easily be
determined by either using dedicated statistical distribution fitting software or by plotting the data on
specialized commercially-available beta probability paper. 

For a distribution which has been hypothesized to be Gamma

   As with the Weibull and beta distributions, gamma parameters can most easily be estimated by using
commercially-available software or gamma probability paper.  

An example of these methods using the hypothetical pesticide data in shown in Box 6. 

Method of Matching Moments.  

The method of moments replaces each uncertain variable by its mean and variance and uses probability laws to
estimate the mean and variance of the models outcome.  However, the method of moments has some fairly severe
limitations.  For example ( Vose, 1996), 

C it assumes that all variables in the model are independent

C it assumes that the outcome is approximately normally distributed

C it assumes either that all variables in the model are approximately normally distributed or that the model
has a very large number of uncertain variables, none of which dominates the outcome; and

 C it cannot easily cope with divisions, exponents, power functions, discrete variables, etc. 
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BOX 6: Determination of the Appropriate Parameters for the Hypothesized Lognormal
Distribution of the  Pesticide Data

Having determined that a log-normal distribution is the most appropriate distribution for further
analysis of the hypothetical tomato residue data, the analyst should next determine the appropriate
parameters which define the distribution (i.e., the mean and standard deviation).  A normal probability
plot of the log-transformed values  reveals a straight line with a slope of 0.4447 and an intercept of
4.65789.  This intercept is an estimate of the mean of the log-transformed values (i.e., it is the F') and
the slope is an estimate of the standard deviation of the log-transformed values (it is the ó') 

These values are comparable to the mean and standard deviation calculated as follows:

Calculating the arithmetic mean and standard deviation from the regression values in order to define the
distribution in its original terms:

Thus, the most appropriate distribution to hypothesize for the hypothetical tomato pesticide residue data
is a lognormal distribution with these parameters.  
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Activity III !!  Assessing Goodness of Fit 

Activity III involves determining how well our selected (and now fully-defined) candidate distribution is in
representing the true underlying distribution for our data. Having estimated the parameters of the candidate
distributions, it is necessary to evaluate the "quality of the fit" and, if more than one candidate distribution was
selected, to select the "best" distribution from among the candidates. A goodness of fit test (GoF test) is a statistical
test in which the null hypothesis (H o) is that the observed data are characteristic of a random variable with the
hypothesized distribution function (e.g, exponential with a â parameter of 0.8). Unfortunately, there is no single,
unambiguous measure of what constitutes best fit.  Ultimately, the risk assessor must judge whether or not the fit is
acceptable. This judgement should be based on a consideration of goodness-of-fit statistics as well as graphical
comparisons of the fitted and empirical distributions, paying special attention to issues relevant to the analysis, e..g,
fit in the lower or upper tails (but note that this is where the confidence intervals are widest).  It is also important to
consider the processes that generated the data and to look for probabilistic distribution models that arise from
similar processes.   Used in conjunction with the probability plots and statistical measures used in Activity I, GoF
tests can, however, be powerful tools for verifying that a chosen distribution is at least reasonable.  

Goodness-of-Fit Tests

Goodness-of-fit tests are formal statistical tests of the hypothesis that the set of sampled observations are an
independent sample from the known or assumed distribution.  The null hypothesis, H o,  is that the randomly
sampled set of observations are independent, identically distributed random samples from a population with the
hypothesized distribution. The GoF tests indicate whether the hypothesized distribution can be reasonably rejected
as improbable.  It is important to recognize that failure to reject H o is not the same as accepting H o as true  These
tests, taken alone, are not very powerful for small to moderate sample sizes (i.e., subtle but systematic
disagreements between the data and the hypothesized distribution may not be detected); conversely, the tests can be
too sensitive for large  numbers of data points -- that is, for data sets with a large number of points, H o will almost
always be rejected.

Commonly used goodness-of-fit tests include the chi-square test, Kolmogorov-Smirnov test, and Anderson-Darling
test.  These are described further below.   

Chi-Square Test.  The chi-square test is based on the normalized difference between the square of the observed
and expected frequencies and can be viewed as a comparison of the frequency histogram with the fitted probability
density function or probability mass function.  The chi-square test statistic is computed by dividing the entire range
of the fitted distribution into k contiguous, non-overlapping intervals and counting the number of data samples
falling into each interval (Nj).  This count is compared to the expected number of observations in a bin.  Given a
sample size of n, i.e., expected number of data points in the jth bin (j = 1 to k) is np  j  where pj = F(xj) ! F(xj!1)
.The chi-square test statistic is computed as

The chi-square test is highly dependent on the width and number of intervals chosen.  Law and Kelton recommend
selecting equi-probable bin widths such that  np j $ 5; D’Agostino and Stephens (1986) recommend selecting k
equi-probable intervals where k = 2n 2/5 For example, if one had 100 data points, one might wish to form k = 13



2 While these inverses can be calculated algebraically for functions with closed forms such as the
exponential, use of a spreadsheet program or numerical methods may be necessary for continuous functions
such as the normal, lognormal, gamma, and beta distributions.  Excel© and QuatroPro©   have built-in
inverse functions which are called NORMSINV, LOGINV, GAMMAINV, and BETAINV, respectively,
which return the value associated with any given probability.  In our hypothetical pesticide example (see
Box 7), the given probability is equal to 1/j for  j = k down to 1, with k = 5 (i.e., 1/j = 0.2 for the first bin
width, 0.4 for the second bin width, 0.6 for the third width, 0.8 for the fourth, and 1.0 for the last).
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(equiprobability) intervals.  If 13 equiprobability intervals are formed for the 100 data points, then the expected
number of points in each interval (i.e., the np j)  would be calculated as follows:  

This satisifies the criteria that each bin size be chosen such that an equal number of points (in this case, 8)
numbering at least five be expected in each bin.  The size of each bin width is calculated by inverting the
cumulative distribution function2.  This is best illustrated by returning to our pesticide example as shown in Box 7. 

Kolmogorov-Smirnov Test.  The Kolmogorov-Smirnov Test is a non-parametric test based on the maximum
absolute difference between the theoretical and sample (or step-wise empirical) Cumulative Distribution Functions
(CDFs). Large values of this statistic indicate a poor fit while small values indicate a good fit.  Critical values for
the K-S statistic depend on whether or not the parameters of the distribution are known a priori or have to be
estimated from the data.  See Law and Kelton (1992) and D’Agostino and Stephens (1986).  

The Kolmogorov-Smirnov test is most sensitive around the median and less sensitive in the tails and is best at
detecting shifts in the empirical CDF relative to the known CDF.  It is less proficient at detecting spread but is
considered to be more powerful than the chi-square test.  

Anderson-Darling Test.  The Anderson-Darling test is designed to test goodness-of-fit in the tails of a probability
density function based on a weighted-average of the squared difference between the observed and expected
cumulative densities.  Additional information and critical values for Anderson-Darling statistic  for the all
parameters known case, and for the normal , exponential, and Weibull distributions are given by Law and Kelton
(1992)and D’Agostino and Stephens (1986).  Because of its relative emphasis on fit in the tails, the Anderson-
Darling statistic may be particularly useful to assessors as a goodness-of-fit statistic.
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BOX 7: Equiprobability Chi-Square Test of Sample Pesticide Data 

For our pesticide example, we have  a total of 25 data points and desire to select k equi-probable intervals.  We
select  k a value of 5: although the formula would yield for k a value of 7  (k = 2(25 2/5)=7), we require a
minimum of 5 data points per bin and thus for 25 points, 5 bins (or equiprobability intervals)  are necessary.  If
5 equiprobability intervals are formed for the 25 data points, then the expected number of points in each
interval (i.e., the np j)  is 5 (or n x 1/k = 25 x (1/5)).  With 5 bins (or intervals), the given probability is equal
to 1/j for j = k down to 1 with k = 5.  That is, 1/j = 0.2 for the first bin width, 0.4 for the second bin width, 0.6
for the third bin width, 0.8 for the fourth, and 1.0 for the last.  The individual bin widths are calculated using
Excel’s LOGINV function with the assumed mean and standard deviation calculated in Activity II.   The
individual bin widths, observed number of points in each bin, the expected number of points in each bin, and
the calculated Chi-square values are shown below:  

.Calculation of Chi-Square Value for Pesticide Example Using a Lognormal
(116.3,  55.2) Hypothesized Distribution 

J Intervala No.
Observed

No. Expectedb Chi-Squarec

Lo Hi

1 0 72.46 6 5 0.2

2 72.46 94.14 4 5 0.2

3 94.14 117.94 6 5 0.2

4 117.94 153.2 5 5 0

5 153.2. 4 4 5 0.2

TOTAL 25 25 0.8

a  Intervals are calculated by evaluating the inverse of the hypothesized
distribution at each j value.  In this example, the hypothesized distribution is
lognormal with an arithmetic mean of 116.3 and an arithmetic  standard deviation
of 55.2.  Since this distribution has no closed form, the upper end of each of the 5
intervals must be evaluated with Excel (or QuatroPro) using the LOGNORMINV
function with a mean (of the logs) of 4.657489 and a standard deviation (of the
logs) of 0.444947 (each of which were calculated previously in Box 6).
b  The number expected in each bin was calculated previously as  n x 1/k   
c  Each chi-square value is calculated as (observed-expected)2 / expected.  The
final chi-square value is calculated as the sum of these individual chi-squared
values

The degrees of freedom is given by í  = k ! m !1 where k is the number of bins (or classes) and  m is the
number of parameters we are estimating from the data  (i.e., the mean and standard deviation).  From this, í  =
5!2!1 = 2.  The ÷ 2 critical value for p = 0.1 and 2 degrees of freedom is calculated as  ÷  2 (0.9;2) = 4.6. 
Since our observed ÷ 2 value of 0.8<4.6, , we are unable to  reject the lognormal  model with an arithmetic 
mean of 116.3  and an arithmetic  standard deviation  of 55.2 on the basis of  this chi-squared test of fit: the
Chi-square value  suggests that there is no reason to conclude that our data are poorly fitted by our
hypothesized lognormal  distribution. 
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Cautions Regarding Goodness-of-Fit Tests

Care must be taken not to over-interpret or over-rely on the findings of goodness-of-fit tests.  It is far too tempting
to use the power and speed of computers to run goodness-of-fit tests against a generous list of candidate
distributions, pick the distribution with the "best" goodness-of-fit statistic, and claim that the distribution that fit
"best" was not rejected at some specific level of significance.  This practice is statistically incorrect and should be
avoided [Bratley et al., 1987, page 134]. As indicated previously,  Goodness-of-fit tests have notoriously low
power and are generally best for rejecting poor distribution fits rather than for identifying good fits.  For small to
medium sample sizes, goodness-of-fit tests are not very sensitive to small (but potentially significant) differences
between the observed and fitted distributions.  On the other hand, for large data sets, even minute differences
between the observed and fitted distributions may lead to rejection of the null hypothesis.  For small to medium
sample sizes, goodness-of-fit tests should best be viewed as a systematic approach to detecting gross differences.  

We note that there is absolutely no substitution for careful visual inspection of both the data and the theoretical
distribution of the fit to the data.  The human eye and brain are able to interpret and understand data anomalies far
beyond the ability of any computer program or GoF tests.  GOF tests may, at best, simply serve to confirm what
the analyst has found though visual inspection.  One may quite appropriately decide to retain a particular 
probability model despite having rejected it on the basis of GoF tests if it appears to be a good fit to the data as
judged by the visual inspection of the probability plots and other comparisons.  

Graphical (Heuristic) Methods for Assessing Fit

Graphical methods provide visual comparisons between the experimental data and the fitted distribution.  Despite
the fact that they are non-quantitative, graphical methods often can be most persuasive in supporting the selection
of a particular distribution or in rejecting the fit of a distribution if one has a sufficiently large sample size.    This
persuasive power derives from the inherent weaknesses in numerical goodness-of-fit tests.  Commonly used
graphical methods for assessing goodness of fit include: 

Frequency comparisons  compare a histogram of the experimental data with the density function of the fitted
data.  Frequency comparisons must be interpreted with care since the visual comparison will depend on the
number of bins used to generate the histogram of the data.  Two examples of a frequency comparison are
shown below for our sample pesticide data. The leftmost illustration compares the untransformed pesticide data
to the normal curve while the illustration to the right compares the log-normalized pesticide residue data to the
normal curve 



3  The theoretical Q-Q plot for the normal (and log-transformed lognormal) distributions are
essentially equivalent (except for scaling) to the normal probability plot discussed earlier and constructing
Q-Q plots for the normal and lognormal distributions would therefore be of little additional value.
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Box plot comparisons compare a box plot of the observed data with a box plot of the fitted distribution.  This is
illustrated below for the sample pesticide residue data (observed) and the lognormal distribution (fitted).

Observed data

       
                             

Fitted Distribution

Probability-Probability plots (P-P plots) compare the observed cumulative density function (i.e., the sample
probability) with the fitted cumulative density function (i.e., the model probability).  P-P plots are used to
graphically evaluate how well the data fit a given (hypothesized) theoretical distribution,  e.g. normal, lognormal,
Weibull, etc.   P-P plots tend to emphasize differences in the middle of the predicted and observed cumulative
distributions, and are less sensitive than Q-Q plots to differences in the tails (where risk assessors are more
frequently interested).

Theoretical Quantile-quantile plots (Q-Q plots) graph the quantiles of the specific fitted (or theorized)
distribution against the quantiles of the actual data.  To construct a theoretical Q-Q plot, one sorts the data in
ascending order and calculates a cumulative frequency  (as done for the normal probability plot) using the standard
plotting formula (i.e., r I /N + 1). At this point, the z value associated with this probability (or cumulative
frequency) value is calculated and transformed to its original scale.  In other words  the quantile value associated
with this cumulative probability from the theoretical distribution is calculated.  This can be done with Excel or
QuantroPro using their inverse cumulative probability functions (e.g., NORMINV,  LOGINV, or GAMMAINV) or
can sometimes be done analytically using an algebraic formula for distributions for which there is a closed form for
the cumulative probability function (e.g., the exponential and Weibull distributions). 3  Finally, the actual data
values are plotted against the values which would have been seen if the data were distributed according to the
hypothesized distribution.  

The theoretical Q-Q plot is used to determine how well the data set is modeled by the theorized distribution: any
systematic deviations in the distribution of our sample data from the hypothesized distribution are highlighted and
(ideally at least) will be readily apparent..  If the graph is linear (and there are no significant systematic deviations
from linearity), this is evidence in support of  the data fitting the specific hypothesized distribution. Q-Q plots tend
to emphasize differences in the tails of the fitted and observed cumulative distributions.  The deviation of a Q-Q
plot from a straight line can provide diagnostic information about the theorized distribution. For example, if the
data in the upper tail fall above the quartile line and those in the lower tail fall below it, there are too few data in the
tails than would be expected in the theoretical distribution (and the theorized distribution is said to be too heavy in
the tails).  Conversely, if the data in the upper tail fall below the quartile line and those in the lower tail fall above
it, then there are more data points in the tails than would be expected in the theorized distribution (and the theorized
distribution is said to be too light in the tails).  Patterns in deviations from linearity can be investigated by use of a
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The choice of whether or not to use an EDF in an
assessment employing Monte Carlo methods is
ultimately up to the risk  and his/her level of comfort
and confidence with the data and the method.  It must 
be remembered that  EDFs (when used in the usual
manner) rely solely on past observations and
therefore preclude generation of data outside the
historically-observed range.  Monte-Carlo results
generated from an EDF may produce tails that are
too short and can therefore underestimate the
probability of extreme events.      

residuals plot to detect systematic departures.  

 

Section III Non-Parametric Distribution Functions
Many times in Monte Carlo analyses, a non-parametric function (or  empirical distribution function (EDF)) is used
to characterize a model variable.  In these situations, the risk assessor has determined that the data itself provides
the best representation of the exposure variable.  Simply put, the risk assessor has chosen to directly use the sample
values to define the distribution of the exposure variable rather than represent it by a theoretical distribution fit to
the data. 

D’Agostino and Stephens (p.8-9,1986) discuss the advantages of EDFs.  Some of the benefits of likely interest to
risk assessors include: 

1. EDFs  provide complete representation of the data without any loss of information.

2. EDFs do not depend on any assumptions associated with parametric models. 

3. For large samples, EDFs converge to the true distribution for all values of x.

4. EDFs provide direct information on the shape of the underlying distribution, e.g., skewness and
bimodality; EDFs supply robust information on location and dispersion.

5. An EDF can be an effective indicator of peculiarities (e.g., outliers)

6. An EDF does not involve grouping difficulties and loss of information associated with the use of
histograms

7. Confidence intervals are easily calculated.

8. EDFs can be effectively used for censored samples.

D’Agostino and Stephens also point out one of the potentially serous drawbacks to EDFs:  EDFs can be sensitive
to random occurrences in the data and sole reliance on them can lead to spurious conclusions.  This can be
especially true if the sample size small. 
In addition, we note that empirical
distributions (as traditionally used) do
not permit data to be generated which are
outside the range of historically observed
data and EDFs therefore tend to
underestimate the probability of an
extreme event.  



A3-26

Below, we discuss how  an EDF is defined and present several approaches used to implement EDFs. 

Discrete Representation of
EDFs
 Given a random sample of n
observations, X1, X2, ···, Xn,, a discrete
representation of this EDF would be
represented as X = {X1, X2, ···, Xn,}. 
These values could be used themselves
directly in the simulation in what is
termed a “trace- driven” simulation.  In
this technique, values from the raw input
data are repeatedly selected in a random
manner  and used to calculated model
outputs.  For example, given the data set X = {1,1,3,4,7,9,12,12,16,17}, a discrete representation of this data set is
illustrated below:  

    

We note that with this representation no intermediate values (e.g., 2, 5, 6, 8, etc) can be generated and the
simulation is limited to only those values which have historically been observed and are present in the data input
set.  
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prob (X # x () ' F(x ( ) '
number of x )s # x (

N

Continuous Representation of EDFs
Given a random sample of n observations, X1, X2, ···, Xn, sorted from smallest to largest, from a true but unknown
distribution, an empirical distribution function, EDF, expressed on a cumulative basis may be defined as

For example, given the same data set X =
{1,1,3,4,7,9,12,12,1 6,17}, the probability
that X # 11 is given by F(11) = 6/10 = 0.60
since there are 6 samples with values
less than or equal to 11 and there are ten
samples in the entire data set.  This
formulation of the EDF presents some
problems since all values of x* in the range
9 < x* # 11 have the same probability
(called constant interpolation), i.e.,
prob (X # 10) = 6/10,  prob (X # 10.5)
= 6/10,  prob (X # 11.5) = 6/10, and  so on.  Defined this way, the EDF is a step function with abrupt jumps at the
sample values as illustrated below:
   

The EDF is then expressed as  
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where x[0] is set to zero. As with the discrete representation, values below the sample minimum and beyond the
sample maximum cannot be generated.  However, unlike the discrete representation, any value between the
maximum and minimum can be generated.  

Linear Interpolation of Continuous EDFs.   It may be unsettling to define the EDF as a step function with
abrupt jumps at certain values and so interpolation  is often used to estimate the probabilities of  values in between
sample values.  Generally , for values between observations, i.e., Xk!1 # x < Xk, linear interpolation is used,
although higher order interpolation is sometimes used.  The EDF for linear interpolation between sample values is
simply

Extended EDF.   The linearly interpolated EDF cannot produce values beyond the values in the data sample. 
This may be an unreasonable restriction in many cases.  For example, the probability that a previously observed
largest value in a sample based on n observations will be exceeded in a sample of  N future observations may be
estimated using the relationship prob = 1 ! n/(N + n).  If the next sample size is the same as the original sample
size, there is a 50% likelihood that the new sample will have a largest value greater than the original sample’s
largest value.  Restricting the EDF to the smallest and largest sample values may produce distributional tails that
are too short.  

In order to get around this problem, one may extend the EDF to include plausible minimum and maximum values. 
The extended EDF expands the linearly interpolated EDF by including a user-defined absolute minimum, xmin, and
absolute maximum, xmax, which are beyond the data sample.  
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where x[0] = xmin and x[n+1] = xmax.



A3-30

References and Suggested Readings

American Industrial Health Council, Exposure Factors Sourcebook,  May, 1984.

P. Bratley, B. L. Fox, L. E. Schrage, A Guide to Simulation, Springer-Verlag, New York (1987).

D.E. Burmaster and E.A.C. Crouch, “Lognormal Distributions for Body Weight as a Function of Age for Males and
Females in the United States 1976-1980.  Risk Analysis,  1, 499-505  (1997)

J.S. Craver, Graph Paper From Your Computer or Copier, Fisher Books.  3rd. Ed., (1996)

R.B. D’Agostino and M.B. Stevens, Goodness of Fit Techniques, Marcel Deker (1986)

Decisioneering, Inc. (1996) Crystal Ball Version 4.0 User Manual, pages 269-275.

M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, John Wiley & Sons, New York (1993).

R. O. Gilbert, Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold, New York
(1987).

L. C. Hamilton, Regression with Graphics - A Second Course in Applied Statistics, Duxberry Press, Belmont, CA
(1992).

D. Hattis and D.E. Burmaster, “Assessment of Variability and Uncertainty Distributions for Practical Risk Analysis”,
14, 713-730 (1994), 

D. R. Helsel and R. M. Hirsh, Statistical Methods in Water Resources, Elsevier, New York (1992).

A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, Chapter 6, 325-419 (especially 356-404), McGraw-
Hill, New York (1991).

J. Lipton, W. D. Shaw, J. Holmes, and A. Patterson, “Short Communication: Selecting Input Distributions for Use in
Monte Carlo Simulations”, Regulatory Toxicology and Pharmacology, 21, 192-198 (1995).

M.G. Morgan and M. Henrion.  Uncertainty: A Guide to Dealing With Uncertainty in Quantitative Risk and Policy
Analysis.  Cambridge University Press (1990)

W. Nelson, Applied Life Data Analysis, John Wiley & Sons, New York (1982).

Wayne R. Ott, Environmental Statistics and Data Analysis, Lewis Publishers (1995).

Palisades. @RISK Users Manual

A.M. Roseberry and D.E. Burmaster, “Lognormal Distributions for Water Intake by Children and Adults,” Risk
Analysis 12, 99-104 (1992).
 
S. H. C. du Toit, A. G. W. Steyn, R.H. Stumpf, Graphical Exploratory Data Analysis, Springer-Verlag, New York



A3-31

(1986).

M. B. Wilk and R. Gnanadesikan, “Probability plotting methods for the analysis of data”, Biometrika, 55(1), 1-17,
(1968).

U.S. EPA, Guidance for Data Quality Assessment: Practical Methods of Data Analysis EPA QA/G-9, EPA/600.R-
96/084, July, 1996.  Available on-line at http://Earth2.epa.gov/ncerqa/qa/docs/epaqag9.PDF

U.S. EPA Exposure Factors Handbook August, 1996.  DRAFT.  EPA/600/P-95-002a,b,c

D. Vose, Quantitative Risk Assessment: A Guide to Monte-Carlo Simulation Modeling.  John Wiley and Sons (1996)



A3-32


